Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Intermolecular interactions in N-(ferrocenylmethyl)anthracene-9-carboxamide

John F. Gallagher, ${ }^{\text {a* }}$ Paula N. Kelly, ${ }^{\text {a }}$ Peter T. M. Kenny ${ }^{\text {a* }}$ and Alan J. Lough ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ National Institute for Cellular Biotechnology, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and ${ }^{\mathbf{b}}$ Department of Chemistry, 80 St George Street, University of Toronto, Ontario, Canada M5S 3H6
Correspondence e-mail: john.gallagher@dcu.ie

Received 3 November 2003
Accepted 7 November 2003
Online 30 November 2003

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}\right)\right]$, was synthesized from the coupling reaction of anthracene-9-carboxylic acid and ferrocenylmethylamine. The ferrocenyl (Fc) group and the anthracene ring system both lie approximately orthogonal to the amide moiety. An amide-amide interaction (along the a axis) is the principal interaction $[\mathrm{N} \cdots \mathrm{O}=2.910$ (2) \AA]. A C $\mathrm{H} \cdots \pi($ arene $)$ interaction $[\mathrm{C} \cdots$ centroid $=3.573(2) \AA$] and a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction $[\mathrm{C} \cdots \mathrm{O}=3.275(3) \AA$] complete the hydrogen bonding; two short (Fc) $\mathrm{C} \cdots \mathrm{C}$ (anthracene) contacts are also present.

Comment

Applications of novel redox-active ligands in diverse research fields, such as medicinal chemistry and materials science, have recently engaged scientists. Ferrocene continues to attract much interest as an electroactive group, with potential applications ranging from sensors to new optical materials to liquid crystals (Chesney et al., 1998; Zakaria et al., 2002; Gallagher et al., 1999; Kraatz et al., 1999; Hudson, Asselsbergh et al., 2001; Hudson, Manning et al., 2001; Seo et al., 2001). Our interest in ferrocene stems from its potential use in both novel sensors and biological systems. We have previously reported the crystal structures of three para-(ferrocenyl)benzoyl esters (Savage et al., 2002; Anderson et al., 2003), and the structure of N-(ferrocenylmethyl)anthracene-9-carboxamide, (I), is reported here. Selected geometric parameters are presented in Table 1, with hydrogen-bond and contact data in Table 2; the molecular and crystal structures are depicted in Figs. 1-3.

In (I), the ferrocenyl (Fc) group $\left[\mathrm{Fc}=\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]$ is normal, with $\mathrm{Fe} 1 \cdots \mathrm{Cg} 1 / \mathrm{Cg} 2$ distances of 1.6498 (10) and $1.6539(11) \AA$, and a $C g 1 \cdots \mathrm{Fe} 1 \cdots C g 2$ angle of 178.51 (6) ${ }^{\circ}$ (Cg1 and Cg2 are the ring centroids for the substituted and unsubstituted rings, respectively). The $\mathrm{Fe} 1-\mathrm{C}$ bond lengths for the substituted $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ cyclopentadienyl ring are in the
range $2.045(2)-2.047(2) \AA$ and those in the unsubstituted $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ring are similar $[2.034$ (2)-2.060 (2) \AA]; the $\mathrm{C}-\mathrm{C}$ bond-length ranges are tight, viz. 1.414 (3) -1.428 (3) and 1.417 (3)-1.421 (4) \AA for the $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ rings, respectively. The C atoms of the $\eta^{5}\left(\mathrm{C}_{5}\right)$ rings are essentially eclipsed, with the five $\mathrm{C} 1 n \cdots \mathrm{Cg} 1 \cdots \mathrm{Cg} 2 \cdots \mathrm{C} 2 n$ angles ($n=1-5$) ranging from $0.2(2)^{\circ}$ (for the $\mathrm{C} 14 / \mathrm{C} 24$ pair) to 0.57 (19) ${ }^{\circ}$ (for the $\mathrm{C} 13 / \mathrm{C} 23$ pair). The $\mathrm{C} 2-\mathrm{C} 11-\mathrm{Fe} 1$ angle is $126.92(15)^{\circ}$, which is similar to the mean value (127.2°) reported in the Cambridge Structural Database (CSD version of July 2003, update 5.24; Allen, 2002) for $\mathrm{Fe}-\mathrm{C}-\mathrm{CH}_{2}$ angles (from 616 'hits' with coordinates and no disorder for $\mathrm{Fe} / \mathrm{CH}_{2}$).

(I)

The overall molecular geometry in (I) is described by the $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 32$ angles [79.6 (3) and $115.4(2)^{\circ}$], which indicate that the three major components in (I), i.e. the ferrocene, amide and anthracene groups, are all approximately orthogonal to one another (Fig. 1). The interplanar angle between the $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ ring and the anthracene group is 88.45 (8$)^{\circ}$ (Fig. 1). The rings in the anthracene group are coplanar with the two external rings, at angles of 1.01 (9) and 1.95 (9) ${ }^{\circ}$ to the central ring (C31-C36). In the C_{14} system, the bond lengths can be arranged in specific groupings, with four in the range 1.353 (3)-1.365 (3) \AA (a in the scheme), four in the range 1.390 (3)-1.412 (3) $\AA(b)$ and eight in the range $1.414(3)-1.441$ (3) \AA [mean 1.428 (3) \AA] (c). These bond lengths correspond to the anthracene system as depicted in our scheme and are similar to those found in related anthracene-9-carboxamide structures in the CSD [e.g. refcodes CABGAO (Adams et al., 2001) and MEYYOE (Kohmoto et al., 2001)].

The primary intermolecular interaction is the amide-amide interaction along the a axis $\left[\mathrm{N} \cdots \mathrm{O}^{\mathrm{i}}=2.910\right.$ (2) \AA; symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$; Table 2] [graph set $C(4)$; Bernstein et al., 1995]. In tandem with the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond, a $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ interaction $\quad\left[\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cg} 3^{\mathrm{i}}\right.$, with $\mathrm{C} 2 \cdots C g 3^{\mathrm{i}}=3.573$ (2) \AA; Cg3 is the centroid of the C31-C36 ring] generates an $R_{2}^{2}(8)$ ring, with the two donors on one molecule and the two acceptors on the other (Figs. 2 and 3). The $\mathrm{C} 15-\mathrm{H} 15$ moiety also forms a $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) contact with the anthracene group $[\mathrm{H} 15 \cdots C g 5=3.04 \AA(C g 5$ is the centroid of the anthracene group), some $0.4 \AA$ longer than the $\mathrm{C} 2 \cdots \pi$ (arene centroid) distance]. However, this contact is directed towards atom C 40 atom $\left(\mathrm{H} 15 \cdots \mathrm{C} 40^{\mathrm{i}}=2.80 \AA\right.$ and $\left.\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{C} 40^{\mathrm{i}}=164^{\circ}\right)$. The $\mathrm{C} 25-\mathrm{H} 25$ group is involved in a similar contact with atom C37 (H25 $\cdots \mathrm{C} 37=2.87 \AA$ and $\left.\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{C} 37^{\mathrm{i}}=149^{\circ}\right)$. A second type of $R_{2}^{2}(8)$ ring can be
considered to form from two $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions involving atoms C 2 and C 15 . A similar arrangement has been observed previously in the crystal structure of $2,4,6$-tris $\left(1^{\prime}-\right.$ phenylthio-1-ferrocenyl)boroxin (CSD refcode BOQQAZ; Hua et al., 2001), in which a ferrocene group forms two contacts with a neighbouring C_{6} aromatic ring, with (cp) $\mathrm{H} \cdots \mathrm{C}_{6}$ distances of 2.78 and 2.87 A , and $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ angles of 164 and 160° (the two C_{6} atoms are para-related; cp is the cyclopentadienyl ring). In the structure of OBEWOH (Knoesen et al., 2001), the (cp)H $\cdots \mathrm{C}$ distances are 2.73 and $2.81 \AA$, and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ angles are 161 and 147°; in PALZOR, bis(2-ferrocenylmethyleneamino)-(benzenethiolato-S)mercury(II), the relevant data are 2.84 and $2.71 \AA$, and 152 and 163° (Kawamoto \& Kushi, 1992). Similar $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ contacts have been reported in ethynyl steroids (Lutz et al., 1998). A C-H. . O hydrogen bond

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A stereoview of the interactions in the crystal structure of (I) (with a labelled unit cell).

Figure 3
A stereoview of the interactions between the ferrocene moiety and the anthracene ring in (I), with atoms drawn as their van der Waals spheres.
involving atoms C44 and $\mathrm{O} 1^{\mathrm{ii}}$ completes the intermolecular interactions [symmetry code: (ii) $\frac{1}{2}-x, y-\frac{1}{2},-z$].

Examination of the structure with PLATON (Spek, 2002) showed that there were four niches, each with a volume of $17 \AA^{3}$, but these are too small to contain even a water molecule ($40 \AA^{3}$).

The majority of ferrocene derivatives in the CSD that contain an amide group have the ferrocene group bonded directly to the amide functionality (usually derived from ferrocenecarboxylic acid or acyl chloride reacted with an amine derivative). The combination of Fc and $\mathrm{CH}_{2} \mathrm{NHCO}$ moieties is unusual, and currently seven examples are available in the CSD. These include FAMFER (Hall \& Brown, 1971), PULDUV (Gale et al., 1998), OHEPUM (Denuault et al., 2002), XULRIF (Laurent et al., 2002), XUZSIU and XUZSUG (Coles et al., 2003). By comparison, there are ten 'hits' for the $\mathrm{Fc} / \mathrm{NH} / \mathrm{CO}$ moiety and 79 'hits' for the $\mathrm{Fc} / \mathrm{CO} / \mathrm{NH}$ moiety. This result can be attributed to the difficulty of obtaining aminoferrocene as a starting material and also the frequency with which ferrocenecarboxylic acid or the acyl chloride are used in condensation reactions with amine derivatives.

Experimental

For the synthesis of (I), ferrocenylmethylamine ($0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$) was added to a solution of anthracene-9-carboxylic acid $(0.56 \mathrm{~g}$, 2.5 mmol), 1-hydroxybenzotriazole ($0.38 \mathrm{~g}, 2.7 \mathrm{mmol}$) and 1,3 -dicyclohexylcarbodiimide $(0.55 \mathrm{~g}, 2.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at 273 K and the mixture stirred for 30 min . The reaction mixture was warmed to room temperature and stirred for a further 48 h . The precipitated N, N^{\prime}-dicyclohexylcarbourea was removed by filtration and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, with the solvent volume reduced in vacuo. The mixture was purified on a silica-gel column using a mobile phase of hexane-ethyl acetate (2:1). Recrystallization from methanol furnished (I) as orange needles $[0.447 \mathrm{~g}, 48 \%$ yield; m.p. $477-479 \mathrm{~K}$ (uncorrected)]. The UV-Vis transition is at 435 nm at a concentration of $1.01 \mathrm{mg} \mathrm{ml}^{-1}$ in CHCl_{3}. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $v_{\mathrm{C}=\mathrm{O}} 1617 ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , DMSO- d_{6}): $\delta 4.19-4.20,4.26,4.36-4.37,4.43-4.44,7.54-$ 7.58, 7.94-7.96, 8.12-8.15, 8.66, 9.12; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 38.75,67.83,68.44,68.82,86.33,125.56,125.93,126.68,127.46$, 127.63, 128.76, 131.04, 133.61, 168.23.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}\right)\right]$
$M_{r}=419.29$
Monoclinic, $P 2_{{ }_{1}} / a$
$a=9.5904$ (3) \AA
$b=13.4903(5) \AA$
$c=15.8568$ (5) \AA
$\beta=106.603$ (2) ${ }^{\circ}$
$V=1965.98(11) \AA^{3}$
$Z=4$

$D_{x}=1.417 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7412
\quad reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.78 \mathrm{~mm}^{-1}$
$T=294(1) \mathrm{K}$
Block, orange
$0.24 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.854, T_{\text {max }}=0.907$
13006 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.097$
$S=1.03$
4481 reflections
267 parameters
H atoms: see below

4481 independent reflections
3287 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 11$
$k=-17 \rightarrow 17$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0383 P)^{2}\right. \\
& +1.1032 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0024 \text { (6) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.245(2)$	$\mathrm{C} 1-\mathrm{C} 31$	$1.499(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.336(3)$	$\mathrm{C} 2-\mathrm{C} 11$	$1.504(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.465(3)$	$\mathrm{N} 1-\mathrm{H} 1$	$0.82(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$121.03(18)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 31$	$117.81(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$122.5(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 11$	$111.85(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 31$	$119.69(18)$	$\mathrm{C} 2-\mathrm{C} 11-\mathrm{Fe} 1$	$126.92(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$-4.1(3)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 11-\mathrm{Fe} 1$	$169.99(14)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 31$	$175.43(18)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 36$	$108.9(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 11$	$-79.1(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 36$	$-70.6(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 15$	$-99.1(2)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 32$	$-65.1(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 12$	$79.6(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 32$	$115.4(2)$

Table 2
Hydrogen-bonding geometry (${ }^{\circ},{ }^{\circ}$).
$C g 3$ is the centroid of the C31-C36 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.82(3)$	$2.10(3)$	$2.910(2)$	$169(2)$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cg}^{\mathrm{i}}$	0.99	2.62	$3.573(2)$	161
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{C} 40^{\mathrm{i}}$	0.95	2.80	$3.726(3)$	164
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{C}^{\mathrm{i}}$	0.95	2.87	$3.715(3)$	149
$\mathrm{C} 44-\mathrm{H} 44 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.41	$3.276(3)$	151

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2},-z$.
Compound (I) crystallized in the monoclinic system; space group $P 2_{1} / a$ was assigned from the systematic absences and confirmed by the analysis. H atoms attached to C atoms were treated as riding, using SHELXL97 (Sheldrick, 1997) defaults, and the H atom attached to the N atom was refined with isotropic displacement parameters $[\mathrm{N}-\mathrm{H}=0.82$ (3) \AA A .

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data
reduction: $D E N Z O-S M N ;$ program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

JFG thanks Dublin City University (DCU) for the purchase of a diffractometer and computer system. AJL thanks the University of Toronto for funds in aid of research. PTMK, PNK and JFG thank the National Institute for Cellular Biotechnology, DCU, for a studentship under the Irish Government PRTLI\#3 funding scheme.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1288). Services for accessing these data are described at the back of the journal.

References

Adams, H., Hunter, C. A., Lawson, K. R., Perkins, J., Spey, S. E., Urch, C. J. \& Sanderson, J. M. (2001). Chem. Eur. J. 7, 4863-4877.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. \& Savage, D. (2003). Acta Cryst. C59, m13-m15.
Bernstein, J., Davies, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Chesney, A., Bryce, M. R., Batsanov, A. S., Howard, J. A. K. \& Goldenberg, L. M. (1998). J. Chem. Soc. Chem. Commun. pp. 677-679.

Coles, S. J., Denuault, G., Gale, P. A., Horton, P. N., Hursthouse, M. B., Light, M. E. \& Warriner, C. N. (2003). Polyhedron, 22, 691-709.

Denuault, G., Gale, P. A., Hursthouse, M. B., Light, M. E. \& Warriner, C. N. (2002). New J. Chem. 26, 811-813.

Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Gale, P. A., Chen, Z., Drew, M. G. B., Heath, J. A. \& Beer, P. D. (1998). Polyhedron, 17, 405-412.
Gallagher, J. F., Kenny, P. T. M. \& Sheehy, M. J. (1999). Inorg. Chem. Commun. 2, 200-202.
Hall, L. H. \& Brown, G. M. (1971). Acta Cryst. B27, 81-87.
Hua, D. H., McGill, J. W., Robinson, P. D. \& Meyers, C. Y. (2001). Acta Cryst. E57, m413-m415.
Hudson, R. D. A., Asselsbergh, I., Clays, K., Cuffe, L. P., Gallagher, J. F., Manning, A. R., Persoons, A. \& Wostyn, K. (2001). J. Organomet. Chem. 637, 435-444.
Hudson, R. D. A., Manning, A. R., Nolan, D. F., Asselsbergh, I., Van Boxel, R., Persoons, A. \& Gallagher, J. F. (2001). J. Organomet. Chem. 619, 141-151.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA
Kawamoto, T. \& Kushi, Y. (1992). J. Chem. Soc. Dalton Trans. pp. 3137-3143.
Knoesen, O., Wessels, P. L., Gorls, H. \& Lotz, S. (2001). Inorg. Chem. 40, 11191205.

Kohmoto, S., Ono, Y., Masu, H., Yamaguchi, K., Kishikawa, K. \& Yamamoto, M. (2001). Org. Lett. 3, 4153-4155.

Kraatz, H.-B., Leek, D. M., Houmam, A., Enright, G. D., Lustyk, J. \& Wayner, D. D. M. (1999). J. Organomet. Chem. 589, 38-49.

Laurent, P., Miyaji, H., Collinson, S. R., Prokes, I., Moody, C. J., Tucker, J. H. R. \& Slawin, A. M. Z. (2002). Org. Lett. 4, 4037-4040.
Lutz, B., Kanters, J. A., van der Maas, J., Kroon, J. \& Steiner, T. (1998). J. Mol. Struct. 440, 81-87.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Savage, D., Gallagher, J. F., Ida, Y. \& Kenny, P. T. M. (2002). Inorg. Chem. Commun. 5, 1034-1040.
Seo, J. S., Yoo, Y. S. \& Choi, M. G. (2001). J. Mater. Chem. 11, 1332-1338.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.
Zakaria, C. M., Ferguson, G., Lough, A. J. \& Glidewell, C. (2002). Acta Cryst. C58, m1-m4.

